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Abstract—This paper focuses on energy-efficient longitudinal
controller design for a connected automated truck that travels in
mixed traffic consisting of connected and non-connected vehicles.
The truck has access to information about connected vehicles
beyond line of sight using vehicle-to-everything (V2X) commu-
nication. A novel connected cruise control design is proposed
which incorporates additional delays into the control law when
responding to distant connected vehicles to account for the finite
propagation speed of traffic waves. The speeds of non-connected
vehicles are modeled as stochastic processes. A fundamental
theorem is proven which links the spectral properties of the
motion signals to the average energy consumption. Controller
synthesis for gain parameters is conducted over downstream
traffic data and evaluated over a combination of synthetic and
real cycles. It is demonstrated that even with lean penetration
of connected vehicles, our controller can bring significant energy
savings.

Index Terms—Connected and Automated Vehicles, Eco-driving

I. INTRODUCTION

ENERGY saving is an everlasting theme for the truck in-
dustry, since it has the potential to provide great financial

and environmental benefits to the industry and the society. Ve-
hicle automation and connectivity technologies may bring new
opportunities for energy saving. On one hand, automated ve-
hicles can be designed such that their controllers are carefully
calibrated for energy efficiency. This includes longitudinal
control systems such as adaptive cruise control (ACC) [1] and
predictive cruise control where the speed profile is optimized
according to the road elevation [2], [3], [4]. On the other hand,
vehicle-to-everything (V2X) communication facilitates infor-
mation sharing and cooperation between vehicles. This can
be categorized into status-sharing, intent-sharing, agreement-
seeking and prescriptive cooperation [5]. A popular approach
to utilize cooperation in control is cooperative adaptive cruise
control (CACC) [6], [7], [8], [9], [10], [11], [12] in which
a platoon of connected automated vehicles is controlled to

This research was supported by the University of Michigan’s Center
for Connected and Automated Transportation through the US DOT grant
69A3551747105.

M. Shen, A. H. Bell, and G. Orosz are with the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI 48109, USA (e-mail:
mhshen@umich.edu, ahbelliv@umich.edu, orosz@umich.edu).

C. R. He is with PlusAI Inc., Cupertino, CA 95014, USA (email:
hchaozhe@umich.edu).

T. G. Molnar is with the Department of Mechanical and Civil Engineer-
ing, California Institute of Technology, Pasadena, CA 91125, USA (email:
tmolnar@caltech.edu).

G. Orosz is also with the Department of Civil and Environmental Engi-
neering, University of Michigan, Ann Arbor, MI 48109, USA.

achieve great energy benefits. However, this requires all the
vehicles involved to be connected and automated, which is
not achievable in the near future.

In the forthcoming decades, researchers and engineers will
need to deal with mixed traffic where vehicles may have
various levels of connectivity and automation. The potential
energy impact of connected vehicles in mixed traffic has
attracted increasing attention in the recent years [13]. Various
scenarios have been investigated, including highways [1], [14],
[15], intersections [16] and roundabouts [17], while other
studies have focused on the energy impact of the penetration
rate of connected and automated vehicles [16], [18], [19].

In this paper, we design a connected cruise controller
(CCC) [20] to control the longitudinal dynamics of a con-
nected automated truck (CAT) traveling in mixed traffic which
consists of connected and non-connected vehicles. We do not
require the other vehicles to be automated, and only assume
lean penetration of connectivity. We consider the lowest level
of cooperation with other connected vehicles, i.e., status-
sharing cooperation, where the CAT obtains the position and
speed of vehicles ahead via V2X communication. We show
that even a single connected vehicle in the downstream traffic
can provide significant energy benefits for the CAT. This gives
incentive to early adoptions of connectivity technologies.

In mixed traffic, with lean penetration of connectivity and
low-level cooperation, a key challenge is to acquire informa-
tion about surrounding traffic with high confidence for use
in control. The CAT may be connected to vehicles in the
far distance only, while surrounding non-connected vehicles
may exhibit a large variety of different motions. Besides, a
controller that ensures high energy efficiency for one motion
profile may perform poorly for another.

A popular control approach is to first predict the motion of
preceding vehicles, then optimize motion of the ego vehicle
accordingly [21], [22]. While long accurate predictions can
lead to large energy savings [23], such predictions are hard
to acquire. As uncertainties grow with the prediction hori-
zon, selected optimal actions could suffer large performance
degradation. With V2X technology, beyond-line-of-sight infor-
mation [24] can potentially improve the prediction accuracy,
although the predict-then-optimize approach may still suffer
from performance variations if the penetration of connected
vehicles is lean. In what follows, instead of pursuing more
precise prediction of transient human behavior, we minimize
the energy consumption in the average sense based on vehicle
trajectory data. We integrate data-driven methods and classical
traffic models to optimize the energy efficiency of CCC.
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Fig. 1. (a) A connected automated truck (CAT) driving in mixed traffic
that consists of connected human-driven vehicles (CHVs) and non-connected
human-driven vehicles (HVs). (b,c) Saturation function. (d) Range policy. (e)
Speed policy.

In this paper, we propose an energy-efficient longitudinal
control strategy for CATs by utilizing data from V2X con-
nectivity. This is achieved by three contributions. First, we
propose a novel CCC design for the CAT, which accounts for
the fact that connected vehicles may travel far ahead of the
CAT, hence it may not be optimal to respond to their motions
immediately. Thus, an additional delay is incorporated into the
response to the motion of distant vehicles [25] allowing the
CAT to “wait” for velocity fluctuations to propagate. Second,
we propose a stochastic modeling framework to capture the
longitudinal motions of human-driven vehicles preceding the
CAT. We estimate the spectral properties of their motions from
V2X data [26], and we state and prove a fundamental theorem
to establish the relationship between the spectral properties
and the average energy consumption of the CAT. Third, we
use this theorem to formulate a V2X data-driven optimization
problem, that tunes the controller gains and additional delays
to maximize the CAT’s energy efficiency. The optimality of
the controller parameters is validated statistically using large
amount of synthetic data as well as experimental data.

The remainder of this paper is organized as follows. In
Section II, we model the dynamics of the CAT, formulate a
connected cruise controller using delayed V2X information,
and highlight the parameters to be optimized. In Section III,
we include necessary mathematical background on stochastic
modeling. In Section IV, we model the motion of preceding
vehicles as stochastic processes, and establish the optimization
problem which enables us to find the energy-optimal controller
parameters. In Section V, we validate the optimality in terms
of energy consumption based on large amount of simulations.
Section VI concludes the paper and discusses future directions.

II. CONNECTED CRUISE CONTROL DESIGN

In this section, we design a longitudinal controller for a con-
nected and automated truck (CAT) that drives in mixed traffic
consisting of connected human-driven vehicles (CHVs) and
non-connected human-driven vehicles (HVs); see Fig. 1(a).
The truck can measure its own speed v, the distance headway
h and the speed v1 of the vehicle immediately ahead using
range sensors such as camera, LiDAR or radar. In this work,
we assume no elevation along the road and no headwind.
We remark, however, that road elevation can be significant to
energy consumption, but it is beyond the scope of this paper.
We formulate the longitudinal dynamics of the truck as

ḣ(t) = v1(t)− v(t) ,

v̇(t) = − 1

meff

(
mgξ + kv2(t)

)
+

Tw(t)

meffR
.

(1)

Here the dot refers to differentiation with respect to time t.
The effective mass meff = m+ I/R2 consists of the mass
m of the truck and the mass moment of inertia I of its
rotating elements. The radius of the wheels is denoted by R,
g is the gravitational constant, ξ denotes the rolling resistance
coefficient, and k is the air drag coefficient incorporating
air density and the vehicle’s frontal area. In this paper, we
choose m = 29484 [kg], I = 39.9 [kg m2], R = 0.504 [m],
ξ = 0.006, k = 3.84 [kg/m] [2]. We describe the nonlinear
physical effects by the function

f(v) =
1

meff

(
mgξ + kv2

)
. (2)

To control the longitudinal motion of the truck, the wheel
torque Tw is generated to achieve desired acceleration. When
Tw > 0, the torque is provided by the powertrain, while when
Tw < 0 the torque comes from the braking system. The control
input u is considered to be the commanded longitudinal
acceleration. The effect of the control input is subject to a
time delay and saturation:

Tw(t)

meffR
= sat

(
u(t− σ)

)
, (3)

where σ models the delay in the powertrain system and the
saturation function is given by

sat(u) =

umin if u ≤ umin ,
u if umin < u < ũmax ,
ũmax if u ≥ ũmax ,

(4)

and

ũmax = min

{
umax,

Pmax

meffv

}
. (5)

The saturation results from the limited available engine
torque (associated with umax), engine power Pmax and
braking torque (associated with umin). They are illus-
trated in Fig. 1(b,c). Here we consider the parameters
umin = −6 [m/s2], umax = 2 [m/s2], Pmax = 300.65 [kW],
meff = 29641 [kg]; see [23].

Considering the nonlinear physical effects f(v), the con-
troller consists of two terms

u(t) = f̃
(
v(t)

)
+ ad(t) , (6)
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where compensation term f̃(v) is implemented by a lower-
level controller in order to cancel the resistance term f(v),
while ad defines the desired acceleration given by a higher-
level controller that is to be designed.

With on-board range sensors such as radar or LiDAR, the
truck can detect the headway and the speed of the preceding
vehicle. This enables adaptive cruise control (ACC) with

ad = α (V (h)− v) + β (W (v1)− v) . (7)

This control law is constructed according to the optimal
velocity model (OVM) [27], [28] that describes human car-
following behavior. The first term aims to maintain a desirable
headway h, and the second term aims to match the speed v
of the ego truck to the speed v1 of the preceding vehicle.

The nonlinear functions V and W in (7) are the range policy
and the speed policy, respectively. The range policy

V (h) = max
{
0,min{κ(h− hst), vmax}

}
, (8)

shown in Fig. 1(d), is the desired speed as a function of the
headway. When the headway is small, the truck intends to
stop, while when the headway is large, it aims to travel at
maximum speed vmax. For headways in between, the desired
speed increases linearly with gradient κ = vmax/(hgo − hst).
Apart from the piecewise linear range policy (8), there exist
many other possible choices such as arctangent function [29]
or quadratic spacing policies [30]. The speed policy

W (v) = min{v, vmax} , (9)

shown in Fig. 1(e), is designed to keep the speed of truck
under the speed limit vmax when preceding vehicles are
speeding. In this paper, we set vmax = 35 [m/s], hst = 5 [m],
hgo = 63.33 [m], yielding κ = 0.6 [1/s].

With vehicle-to-everything (V2X) communication, the truck
has access to information about preceding vehicles, including
their position and speed. In this paper, we establish energy-
efficient longitudinal controllers by leveraging the information
from V2X connectivity in the case of lean (very low) pene-
tration of connected vehicles. Specifically, we focus on the
scenario in Fig. 1(a) where only a single vehicle (with index
L) is connected to the CAT in the downstream traffic.

Let I denote the indices of the vehicles whose information
the CAT has access to. This includes the vehicle immediately
ahead of the truck, which is monitored by the range sensors, as
well as the CHVs who share their motion information via V2X
connectivity. For example, in Fig. 1(a) the CAT has access to
information about vehicles indexed 1 and L, i.e., I = {1, L}.
Then, the CAT may respond to multiple preceding vehicles by
using connected cruise control (CCC) [31] with

ad = α (V (h)− v) +
∑
i∈I

βi (W (vi)− v) . (10)

This control law is an extension of the ACC strategy in (7),
where the second term matches the speed v of the ego truck
with both the speed v1 of the vehicle immediately ahead and
the speeds of the connected vehicles in the distance.

Through V2X communication, the truck can potentially
connect to vehicles a few hundred meters in the distance. The
behavior of vehicles far ahead may not immediately influence

the behavior of vehicles surrounding the truck, instead, the
effects may occur a few seconds later as traffic waves propa-
gate with a finite speed along vehicle chains [32], [33]. This
phenomenon is captured by many traffic flow models such as
the Lighthill-Whitham-Richards model [34], [33] or Newell’s
equation [35]. Thus, the truck can intentionally wait before
responding to vehicles far in the distance. Using this idea, we
propose a CCC design with additional delay (CCC-Delay):

ad(t) = α
(
V (h(t))− v(t)

)
+

∑
i∈I

βi

(
W (vi(t− σi))− v(t)

)
.

(11)
The key novelty of the proposed controller (11) is the in-
troduction of the time delay (waiting time) σi as design
parameter. While delays often cause instability or reduce
control performance, this additional delay will be shown to
improve the energy efficiency of the CAT by accounting for
the propagation time of traffic waves.

The most fundamental requirement for the controller (11)
is to realize stable motion for the CAT. In order to analyze
the stability of the closed-loop system defined by (1,6,11), we
linearize the system around the equilibrium

h(t) ≡ h∗ , v(t) = vi(t) ≡ v∗ = V (h∗) , (12)

for i ∈ I. Defining the headway and speed perturbations
h̃ = h− h∗, ṽ = v − v∗, ṽi = vi − v∗, we may obtain the
linearized dynamics in the form

˙̃
h(t) = ṽ1(t)− ṽ(t) ,

˙̃v(t) = α
(
κh̃(t− σ)− ṽ(t− σ)

)
+
∑
i∈I

βi

(
ṽi(t− (σ + σi))− ṽ(t− σ)

)
.

(13)

For analysis in frequency domain, we apply the Laplace
transform with zero initial condition, which leads to

V (s) =
∑
i∈I

Ti(s)Vi(s) . (14)

Here V (s) and Vi(s) denote the Laplace transforms of the
speed perturbation ṽ(t) of the CAT and the speed perturba-
tions ṽi(t) of the preceding vehicles, while the link transfer
functions are defined as

T1(s) =
β1s+ ακ

D(s)
, Ti(s) =

βise
−sσi

D(s)
, (15)

for i ∈ I \ {1}, where

D(s) = s2esσ +

(
α+

∑
i∈I

βi

)
s+ ακ (16)

gives the characteristic function.
In order to ensure that the truck is able to approach the

equilibrium (12), the linearized system (13) needs to be plant
stable [31]. That is, all roots of the characteristic equation
D(s) = 0 must have negative real parts. This is satisfied when
the parameters (α, βi), i ∈ I are selected from the region

α > 0 ,

ω sin(ωσ)− α <
∑
i∈I

βi < ω sin(ωσ)− α , (17)
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where ω and ω are the solutions of the transcendental equation
ακ = ω2 cos(ωσ) such that 0 < ω < ω < π

2 . Note that the
additional delay σi does not influence the plant stability of
the closed-loop system [25].

To evaluate the tank-to-distance energy consumption [36] of
the CAT, we use the energy consumption per unit mass over
the time interval t ∈ [t0, tf ] as metrics:

w =

∫ tf

t0

v(t)g
(
v̇(t) + f(v(t))

)
dt , (18)

where g depends on the engine and powertrain type. Here,
we consider trucks with internal combustion engines and use
g(x) = max{x, 0}, so that energy is assumed to be consumed
only when u > 0. For hybrid electric vehicles or electric
vehicles, one may choose different expression for g [37]. Our
goal is to find the controller parameters (α, βi, σi), i ∈ I that
minimize w while also ensuring plant stability.

III. STOCHASTIC MODELING

In this section, we propose a stochastic approach where we
model the motion of the preceding vehicles using stochastic
processes. For simplicity, we limit our analysis to a specific
family of stochastic processes, Gaussian processes, which
result in physically realistic vehicle motions.

Consider a closed-loop system with dynamics (1,6,11)
where the inputs vi, i ∈ I are described by stochastic pro-
cesses. The goal is to relate the gain parameters (α, βi), i ∈ I
and the delays σi, i ∈ I through the system output v to
the energy consumption w defined in (18). To simplify the
analysis, we make three assumptions about the input processes
vi, i ∈ I: (i) they are wide-sense stationary (WSS); (ii) they
are differentiable; (iii) they are Gaussian processes. We discuss
these assumptions more rigorously below and relate them to
spectral theory.

The stationarity assumption enables us to apply spectral
analysis, and link the controller parameters to the characteris-
tics of the output process v. To achieve this, we need a few
definitions.

Definition 1 (Strict-sense Stationary (SSS)). A stochastic
process {Xt}t∈T is strict-sense stationary if for any indices
t1, · · · , tk ∈ T and sets A1, · · · , Ak, the probabilities

P(Xt1+t ∈ A1, · · · , Xtk+t ∈ Ak) , (19)

do not depend on t, where t ∈ T .

Specifically, choosing t1 = 0 and k = 1, shows that the
marginal distribution of random variable Xt is time-invariant.
In general, SSS is a strong requirement which is hard to satisfy.
However, in many cases, the first and second moments of
the distribution can provide enough information. Thus, many
theories, such as spectral analysis, only require wide-sense
stationarity, where stationarity is enforced only on first and
second moments.

Definition 2 (Mean and Correlations). For a stochastic process
{Xt}t∈T , the mean and the autocorrelation are given by

µX(t) = E[Xt] , RXX(s, t) = E[XsXt] , (20)

where E[·] denotes the expected value. Considering another
stochastic process {Yt}t∈T defined on the same probability
space, we define the cross-correlation as

RXY (s, t) = E[XsYt] . (21)

Definition 3 (Wide-sense Stationary (WSS)). A stochastic
process {Xt}t∈T is called wide-sense stationary if there exist
a constant m and a function r(t), t ∈ T , such that

µX(t) ≡ m, RXX(s, t) = r(t− s) , ∀s, t ∈ T . (22)

That is, when {Xt}t∈T is WSS, RXX(s, t) is a function
of (t− s) and we can write RXX(τ) = RXX(t− s) without
ambiguity. One may verify that autocorrelation is symmet-
ric, that is, RXX(s, t) = RXX(t, s) for a general stochastic
process, yielding RXX(τ) = RXX(−τ) for a WSS process.
Similarly, the cross-correlation is also symmetric. Also note
that the autocorrelation RXX(0) gives the second moments;
cf. (20). We assume that speed perturbations of the preceding
vehicles ṽi are WSS, that is, vi = v∗ + ṽi where v∗ denotes
the equilibrium speed and µṽi = 0, for all i ∈ I.

For a signal that satisfies WSS condition, we can apply
spectral analysis and determine the input/output relationship
for linear time-invariant (LTI) systems. Such analysis utilizes
the power spectral density which can be defined via the
continuous-time Fourier transform of the WSS process.

Definition 4 (Power spectral density [38]). For a WSS process
Xt, the power spectral density is the Fourier transform of the
autocorrelation function:

SXX(ω) = F [RXX(τ)] =

∫ ∞

−∞
RXX(τ)e−jωτdτ , (23)

where ω denotes the angular frequency.

Since RXX(τ) = RXX(−τ), the power spectral density
SXX(ω) is a non-negative real number and one can also
show that SXX(ω) = SXX(−ω). For LTI systems with input
being a WSS process, the power spectral density of the output
process can be calculated using the following lemma [38].

Lemma 1 (Spectral Analysis of LTI Systems). For a linear
time invariant system with transfer function G(s), if the input
signal Xt is a WSS process, then the output signal Yt is also
WSS. The first and second moments of Yt are given by

µY = G(0)µX , SY Y (ω) = |G(jω)|2SXX(ω) . (24)

The proof can be found in Chapter 8.2 of [38].
Similarly, the cross power spectral density can be defined

as the Fourier transform of the cross-correlation function

SXY (ω) = F [RXY (τ)] , (25)

which may be a complex number. The following lemma
defines the input/output relationship of signals passing through
different LTI systems [38].

Lemma 2. Given two signals Xt and Yt separately passing
through two LTI systems with transfer functions G1(s) and
G2(s), respectively, the cross power spectral density of the
corresponding outputs Zt and Pt is

SZP (ω) = G1(jω)G
∗
2(jω)SXY (ω) , (26)
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where star denotes complex conjugate.

The proof can be found in Chapter 8.2 of [38].
In practice, it is reasonable to assume that the speeds

of preceding vehicles are continuously differentiable, i.e.,
accelerations are continuous. Specifically, for a WSS process
Xt, the time derivative Ẋt has the following properties:
(a) Xt and Ẋt are jointly WSS
(b) µẊ(t) = 0
(c) RẊX(τ) = d

dτRXX(τ) = −RXẊ(τ)
(d) RẊX(0) = RXẊ(0) = 0

(e) RẊẊ(τ) = − d2

dτ2RXX(τ)

The proof can be found in Chapter 7.2 of [38].
Apart from being differentiable, the speeds of preceding

vehicles are assumed to be Gaussian processes. This simplifies
the analysis and enables us to derive analytical results.

Definition 5 (Gaussian Process (GP)). A stochastic process
{Xt}t∈T is a Gaussian process if for every finite set of indices
t1, · · · , tk ∈ T , X(t1, · · · , tk) = (Xt1 , · · · , Xtk) is multivari-
ate Gaussian random variable.

Gaussian process has the following nice properties [38].
(a) Gaussian process is uniquely determined by its mean

function and autocorrelation function.
(b) If a Gaussian process is WSS, then it is SSS.
(c) For a linear system, if the input signal is a Gaussian

process, then the output is also a Gaussian process.
(d) If a Gaussian process Xt is mean square differentiable,

then Ẋt is also a Gaussian process.
In this section, we have established necessary properties

of the motions of preceding vehicles by assuming them to
be stationary differentiable Gaussian processes. We are now
ready to apply spectral analysis on the closed-loop linearized
system (13) to derive the distribution of the CAT’s motion,
as well as the average energy consumption. This allows us to
optimize the controller parameters (α, βi, σi), i ∈ I for energy
efficiency based on the data obtained from V2X connectivity.

IV. DATA-DRIVEN CONTROLLER OPTIMIZATION

In this section, we propose a method to determine the
energy-optimal parameters for the proposed controller using
traffic data. First we derive an optimization problem assuming
oracle knowledge about the spectral density of the preceding
vehicles’ speed. Then we introduce two estimators for the
cross power spectral density, and finally formalize the data-
driven controller optimization method.

A. Optimization with Oracle Knowledge

Here we utilize the theory introduced in the previous sec-
tion, to apply spectral analysis for the linearized system (13),
derive analytical expression for the expectation of the energy
consumption defined in (18), and formulate an optimization
problem to determine energy-optimal controller parameters.
We achieve these results under the following assumption.

Assumption 1. The inputs ṽi, i ∈ I are WSS, mean-square
differentiable Gaussian processes with zero mean.

For the linearized system (13), the nonlinear physical ef-
fects f(v) and saturation sat(·) are dismissed. Therefore, we
consider the surrogate energy consumption model

w̄ =

∫ tf

t0

v(t)g
(
v̇(t)

)
dt , (27)

cf. (18). Then, the following theorem provides an analytical
expression for the energy consumption.

Theorem 3. Consider the linearized dynamics (13) around
equilibrium (12) under Assumption 1. The expectation of the
energy consumption defined in (27) is given by

E[w̄] = (tf − t0)
v∗√
2π

ϑ , (28)

where

ϑ2 =
1

π

∑
i,j∈I

∫ ∞

0

ω2Ti(jω)T
∗
j (jω)Sṽiṽj (ω)dω (29)

represents the variance of v̇, which is equal to the variance
of ˙̃v.

Proof. Under Assumption 1, the output ṽ is a WSS Gaussian
process with zero mean. According to (14), the output signal
ṽ can be decomposed into response ηi to each input signal ṽi:

ṽ(t) =
∑
i∈I

ηi(t) . (30)

In time domain, we have

Rṽṽ(τ) = E[ṽ(t)ṽ(t+ τ)]

=
∑
i,j∈I

E[ηi(t)ηj(t+ τ)]

=
∑
i,j∈I

Rηiηj (τ) .

(31)

Taking the Fourier transform and noting that
F [Rṽṽ(τ)] = Sṽṽ(ω) and F [Rη̃iη̃j

] = Sη̃iη̃j
(ω), we obtain

Sṽṽ(ω) =
∑
i,j∈I

Sηiηj
(ω)

=
∑
i,j∈I

Ti(jω)T
∗
j (jω)Sṽiṽj (ω) ,

(32)

where in the last step we used Lemma 2. Note that when i = j,
we have Sηiηj

= |Tij(jω)|2Sṽiṽj (ω).
The speed perturbation of the truck ṽ as well as its derivative

˙̃v are WSS Gaussian processes with zero mean. Let us consider
the second moments

ς2 = Rṽṽ(0) , ϑ2 = R ˙̃v ˙̃v(0) . (33)

Since for WSS process RẊẊ(τ) = − d2

dτ2RXX(τ), we can
express the variance of ˙̃v as

ϑ2 = R ˙̃v ˙̃v(0)

= − d2

dτ2
Rṽṽ(τ)

∣∣∣∣
τ=0

= F−1[ω2Sṽṽ(ω)]|τ=0

=
1

2π

∫ ∞

−∞
ω2Sṽṽ(ω)e

jωτdω

∣∣∣∣
τ=0

.

(34)
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Since Sṽṽ(ω) = Sṽṽ(−ω), we have

ϑ2 =
1

π

∫ ∞

0

ω2Sṽṽ(ω)dω

=
1

π

∑
i,j∈I

∫ ∞

0

ω2Ti(jω)T
∗
j (jω)Sṽiṽj (ω)dω.

(35)

Thus, considering Rṽ ˙̃v(0) = 0, we can write down the joint
distribution of v = ṽ + v∗ and v̇ = ˙̃v as follows

p(v, v̇) =
1

2πςϑ
exp

(
− (v − v∗)2

2ς2
− v̇2

2ϑ2

)
. (36)

From SSS assumption, the distributions of v(t) and v̇(t) are
time-invariant. The mean value of the energy consumption w̄
defined in (27) can be calculated as

E[w̄] =
∫ tf

t0

dt

∫ ∞

−∞
dv

∫ ∞

−∞
vg(v̇)p(v, v̇)dv̇

= (tf − t0)

∫ ∞

−∞
dv

∫ ∞

0

vv̇p(v, v̇)dv̇ (37)

= (tf − t0)
1

2πςϑ

[∫ ∞

−∞
v exp

(
− (v − v∗)2

2ς2

)
dv

]
×
[∫ ∞

0

v̇ exp

(
− v̇2

2ϑ2

)
dv̇

]
= (tf − t0)

v∗√
2π

ϑ .

This completes the proof.

Theorem 3 provides a concise closed-form expression
in (28) for the average energy consumption, which is proved
to be proportional to the standard deviation ϑ of the ego
truck’s acceleration v̇. The standard deviation ϑ is analytically
calculated in (29) with the spectral theory introduced in
Section III, based on the linearized closed-loop system (13)
and the spectral density of the input signal ṽi. As shown
in (29), the standard deviation ϑ is related not only to the
closed-loop transfer function Ti(jω) but also to the relationship
among input signals given by Sij(ω). Note that the traffic wave
propagation phenomenon mentioned before can be captured by
S1L(ω), that is the cross spectral density associated with the
speeds of vehicle L in the distance and vehicle 1 immediately
in front of the ego truck.

As consequence of Theorem 3, parameters that minimize
ϑ2, the variance of v̇, also minimize the average energy
consumption. In this paper, we fix α = 0.4 [1/s] for safety
considerations [39], and search for the optimal parameters
(βi, σi), i ∈ I. We find their values by solving an optimization
problem summarized in the following corollary of Theorem 3.
Note that the results can be easily extended to include α.

Corollary 3.1. Consider the linearized dynamics (13) around
equilibrium (12) under Assumption 1. The optimal values of
the control parameters (βi, σi), i ∈ I that minimize the expec-
tation of the energy consumption (27) while maintaining plant
stability can be found by solving the optimization problem

min
(βi,σi)

J =
∑
i,j∈I

∫ ∞

0

ω2Ti(jω)T
∗
j (jω)Sṽiṽj (ω)dω ,

s.t. (βi) ∈ Ω , (38)

where Ω is the plant stable region defined in (17).

Power spectral densities of speed perturbations of preceding
vehicles are included in the objective function of (38) when
i = j. Furthermore, the cross power spectral densities in
the objective function capture the correlations between the
speed perturbation signals of the preceding vehicles when
i ̸= j. Such correlations are especially significant in dense
traffic where the motions of subsequent vehicles are typically
strongly coupled. For example, Newell’s car-following model
considers the speed of a following vehicle as delayed copy of
the vehicles ahead [35]. Computing the cross power spectral
density allows us to capture and utilize such strong correlations
to improve energy efficiency.

Remark. Theorem 3 relies on linear approximations of both
the dynamics and the energy measure as opposed to directly
considering nonlinear expressions. The advantage of the linear
surrogate energy model (27) is that it leads to the average
energy consumption in closed form, enabling the construction
of the optimization problem (38). The linear approximation,
however, may lead to suboptimal performance under nonlinear
dynamics, which will be investigated via numerical results.
We remark that there exist spectral analysis techniques for
nonlinear stochastic systems [40], [41], although these can be
very involved and are beyond the scope of this work.

B. Data-driven Optimization

In practice, the true value of the cross power spectral
density Sṽiṽj (ω) is unknown. Instead, we need to estimate
it from finite amount of data sampled in discrete time. In this
paper, we utilize two estimators: periodogram and Welch’s
method [42].

Consider observation data of two velocity signals
{vi(tk)}N−1

k=0 and {vj(tk)}N−1
k=0 for time instances tk = k∆t.

First, we subtract from each term their sample mean to
get the centralized data {ṽi(tk)}N−1

k=0 and {ṽj(tk)}N−1
k=0 . Let

{Ṽi(ωk)}N−1
k=0 and {Ṽj(ωk)}N−1

k=0 , ωk = 2πk
N∆t be the discrete-

time Fourier transforms of {ṽi(tk)}N−1
k=0 and {ṽj(tk)}N−1

k=0 ,
respectively. The periodogram method estimates the cross-
spectral density with

Ŝṽiṽj (ωk) =
2∆t

N
Ṽi(ωk)Ṽ

∗
j (ωk) . (39)

When i = j, it reduces to the one-sided estimator of power
spectral density

Ŝṽiṽi (ωk) =
2∆t

N

∣∣Ṽi(ωk)
∣∣2 . (40)

The periodogram estimator is asymptotically unbiased, but
suffers from high variance. We can apply the following meth-
ods to reduce the variance. In time domain, we can split the
original signals into segments, calculate the periodogram of
each segment, then average them for each frequency. In fre-
quency domain, we can apply window functions, such as Ham-
ming window, and calculate the periodogram for windowed
signals. Welch’s method [43] combines the two solutions
together. First we split each original signal into overlapping
segments, with 50% overlap ratio. Then we apply window



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEM 7

function to each segment and calculate the periodogram for
each windowed segment. Finally, we average over all the
periodograms for each frequency. Welch’s method can achieve
lower variance, but at the cost of frequency resolution. We will
see later in Section V-C that the variance reduction property
can help us obtain better controller gains βi, but the low
resolution poses limitations on getting appropriate information
delay σi.

It is straightforward to replace the power spectral density
Sṽiṽj in (38) with periodogram estimator, and rewrite the
optimization problem for discrete-time observations:

min
(βi,σi)

J ≈ 2∆t

N

N−1∑
k=0

∑
i,j∈I

ω2
kTi(jωk)T

∗
j (jωk)Ṽi(ωk)Ṽ

∗
j (ωk)

=
2∆t

N

N−1∑
k=0

ω2
k

∣∣∣∣∣∑
i∈I

Ti(jωk)Ṽi(ωk)

∣∣∣∣∣
2

=
2∆t

N

N−1∑
k=0

ω2
k

∣∣∣Ṽ (ωk)
∣∣∣2

s.t. (βi) ∈ Ω.
(41)

Note that the constraint (βi) ∈ Ω is affine in βi based on (17),
while the cost is a complicated nonlinear function of (βi, σi)
due to the expression (15) of the transfer function Ti(jω).
Therefore, the optimization problem (41) needs to be solved
with a general nonlinear optimization solver. In this paper, we
use fmincon [44] with interior-point method.

The optimization problem is similar for Welch’s method.
We only need to substitute the cross power spectral density
Sṽiṽj (ω) in (38) with estimation results from Welch’s method.
Notice that we do not need to know the equilibrium velocity
v∗ in our data-driven method.

We remark that by choosing the periodogram as the spectral
estimator, we recover the optimization framework in our previ-
ous work [23], where the energy-optimal controller parameters
are selected by minimizing

∑N−1
k=1 ω2

k

∣∣Ṽ (ωk)
∣∣2, equivalently

to (41). The method presented in this paper gives solid
theoretical justification to our previous framework and extends
it to allow further improvement by choosing a better spectral
estimator, e.g., Welch’s method.

V. NUMERICAL RESULTS

In this section, we evaluate the optimization method pro-
posed above using both synthetic data and real traffic data.
With synthetic data, we have access to the underlying ground
truth distribution of trajectories, which enables us to verify
our theory. With real traffic data, we can show the potential
of applying the proposed method in the real world. The evalu-
ation scenarios include adaptive cruise control and connected
cruise control with CHVs ahead of the CAT in the traffic. To
showcase the potential of the proposed design to save energy
with lean penetration of connectivity, we consider the scenario
where the truck is only connected to a CHV L vehicles ahead.

A. Simulation Dataset
We consider two kinds of traffic data: driving in free-

flow conditions and in traffic congestion [39]. These are

shown in Fig. 2(a) and (b), respectively. In the second case,
the leading vehicle frequently makes mild brakes, and the
following vehicles have increasingly harsh brakes because of
the string instability of human drivers [45], [46]. This string
instability implies that the speed fluctuations of the vehicles in
the distance may be milder than of those closer to the truck.
With V2X connectivity, the CAT may respond not only to the
immediate preceding vehicle but also the vehicles far in the
distance. On the other hand, the observed phase-lags between
the braking events motivate us to introduce the additional
delays σi in (11). That is, it takes time for the behavior of
preceding vehicles to affect the CAT, therefore, it shall “wait”
before responding to vehicles far in the distance.

We generate synthetic speed trajectories for the preceding
vehicles according to the stochastic modeling assumptions in
Section III. In particular, we first generate the speed profile
of vehicle L, and then simulate the following vehicles using
a car-following model. According to Assumption 1 in Section
III, the stochastic process ṽL(t) = vL(t)− v∗ is a mean zero
differentiable Gaussian process. In this paper, we choose
Matérn kernel [47]

RṽLṽL(τ) = C2 2
1−ν

Γ(ν)

(√
2ν

τ

ρ

)ν

Kν

(√
2ν

τ

ρ

)
, (42)

for this Gaussian process, where Γ is the Gamma function,
Kν is the modified Bessel function of the second kind, C, ρ
and ν are positive parameters. In our simulations, we choose
v∗ = 25 [m/s], C = 1, ρ = 5, and ν = 5

2 . It can be proven that
this process is second-order mean square differentiable [47].

To generate speed profiles for the following vehicles we use
the optimal velocity model (OVM) for human driver behavior:

ḣi(t) = vi+1(t)− vi(t)

v̇i(t) = αh(V (hi(t− σh))− vi(t− σh))

+ βh(W (vi+1(t− σh))− vi(t− σh)),

(43)

for i ∈ {1, . . . , L− 1}, where the range policy is given by

Vh(h) = max
{
0,min{κh(h− hst), vmax}

}
, (44)

and W is defined in (9). We choose parameters αh = 0.2 [1/s],
βh = 0.8 [1/s], κh = 1.0 [1/s], σh = 1.0 [s], and L = 8.
Fig. 2(c) shows the corresponding synthetic speed trajectories.
Remark. To keep the narrative simple, we show simulation
results for the OVM only. However, we remark that our results
are robust against the human driver behavior due to the data-
driven nature of our approach. Apart from the OVM, we also
conducted simulations on heterogeneous traffic where human
driver models are randomly chosen as OVM or intelligent
driver model [48], and we reached very similar conclusions
to those with the OVM only.

B. Benefits of Connectivity

In this section, we compare the energy consumption for
scenarios with and without connectivity in the traffic. Based
on the synthetic dataset introduced in the previous section, we
apply a cross evaluation method to evaluate the proposed con-
trollers. This consists of two steps: observation and testing. In
observation step, we observe the speed profile of the preceding
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Fig. 2. Velocity profiles for vehicles 8 (brown), 5 (green), 3 (red), 1 (pink).
(a) Experimental velocity data in free-flow traffic condition. (b) Experimental
velocity data in congestion. (c) Synthetic data.

vehicle, estimate the spectral density, and solve the optimiza-
tion problem (38) to get the optimal controller parameters.
In testing step, we simulate the truck for different preceding
vehicle speed profiles, using the optimal parameters calculated
in the observation step. The speed profile of the preceding
vehicle in testing step shall have the same distribution as that
in observation step. In particular, for the synthetic dataset,
we create 101 candidate speed profiles for the preceding
vehicle according to Section V-A and arbitrarily pick one for
observation and another one for testing. Therefore, there are
101× 100 observation-evaluation pairs.

Since the theoretical results are derived based on lineariza-
tion, we conduct simulations for both linear and nonlin-
ear systems. In the former case, we simulate the linearized
system (13) where the nonlinear physical effects f(v) and
sat(·) are dropped. Consequently the energy consumption
model (27) is applied for evaluation. On the other hand, when
simulating the nonlinear system (1,6,11), we take into account
all nonlinear effects, and use (18) to calculate the energy
consumption.

When there is no connected vehicle in the traffic, the truck
can only collect information about the motion of the vehicle
immediately ahead. We refer to this as adaptive cruise control
(ACC). The corresponding energy consumption will serve as
a benchmark, and will be compared to the CCC controllers
which exploit V2X connectivity. The acceleration command
of adaptive cruise control is given by (7). Thus, (14,15,16)
yields

V (s) = T (s)V1(s), T (s) =
β1s+ ακ

s2esσ + (α+ β1)s+ ακ
.

(45)
Fig. 3 shows the cross evaluation result for the energy

consumption of adaptive cruise control (ACC), connected
cruise control without additional information delay (CCC), and
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Fig. 3. Cross evaluation of energy consumption of ACC, CCC without
additional delay and CCC with delay. In observation step, power spectral
density is chosen from oracle knowledge (panels (a), (b)), periodogram
estimator (panels (c), (d)) and Welch’s method (panels (e), (f)), respectively.
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Fig. 4. Speed profile of the CAT following synthetic trajectory in Fig. 2(c)
using ACC, CCC and CCC with additional delay. We choose vehicle 8 as
leading vehicle (L = 8). Spectral densities are chosen from oracle knowledge.
(a) Linear simulation. (b) Nonlinear simulation.

ACC [kJ/kg] CCC [kJ/kg] CCC-Delay [kJ/kg]
Oracle 3.018 1.331 (−55.89%) 1.178 (−60.98%)

Periodogram 3.044 1.529 (−49.77%) 1.378 (−54.72%)
Welch 3.020 1.379 (−54.35%) 1.244 (−58.80%)

TABLE I
AVERAGE ENERGY CONSUMPTION w̄ IN LINEAR SIMULATION.

ACC [kJ/kg] CCC [kJ/kg] CCC-Delay [kJ/kg]
Oracle 4.438 3.709 (−16.44%) 3.635 (−18.11%)

Periodogram 4.453 3.771 (−15.33%) 3.705 (−16.82%)
Welch 4.436 3.712 (−16.34%) 3.653 (−17.66%)

TABLE II
AVERAGE ENERGY CONSUMPTION w IN NONLINEAR SIMULATION.
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CCC with delay (CCC-Delay). In the observation step, power
spectral density can be chosen from oracle knowledge (pan-
els (a) and (b)), periodogram estimator (panels (c) and (d))
and Welch’s method (panels (e) and (f)), respectively. For
both estimators, information from V2X connectivity can bring
significant energy reduction compared to ACC, where no V2X
connectivity is available. The average energy consumption is
compared for the different cases in Tables I and II. In the linear
case (Table I), connectivity can reduce the energy consumption
by around 50%, while in the nonlinear case, at least 15%
energy is saved. Note that these savings are achieved by adding
a single connected vehicle in the traffic flow. The additional
delay leads to additional 5% energy saving in the linear case,
and additional 2% saving in the nonlinear case.

Although the energy reduction rate is considerably larger
for the linear case than for the nonlinear case, it is significant
even for nonlinear dynamics. This shows that our method is
robust to the occurrence of nonlinear physical effects. We also
note that the 15% energy benefit thanks to V2X connectivity
is obtained in scenarios with heavy traffic congestion, which
are the most energy-sensitive scenarios. In daily driving, con-
nectivity (using controllers different from ours) was reported
to bring around 3% energy benefits [49].

To further investigate how connectivity and the additional
delay benefits the energy consumption, in Fig. 4 we plot the
speed profiles of the CAT executing ACC, CCC, and CCC
with additional delay, respectively. We choose synthetic speed
trajectories shown in Fig. 2(c) for preceding vehicles, and
vehicle 8 is the leading vehicle (L = 8). Simulation results of
the linearized system and the nonlinear system are shown in
panels (a) and (b) of Fig. 4, respectively. The ACC controller
closely follows the trajectory of its immediate predecessor. As
highlighted by the zoom-ins, there is heavy braking around
t = 260 [s], which results in heavy braking with ACC. Thus,
ACC consumes significant energy. However, with connectivity
the CAT has access to the states of preceding vehicles in the
distance. Hence the truck knows that the leading vehicle L
brakes around t = 240 [s], and using CCC it can brake in
advance, creating enough safe margin to avoid heavy braking
at t = 260 [s]. Moreover, since the braking behavior takes
around 10 seconds to propagate from vehicle L to 1, the truck
does not need to react immediately to the brake. Instead, it can
purposely delay the reaction with a few seconds. Thus, CCC
with additional delay further reduces the speed perturbation.

C. Choice of Spectral Estimator

In this section, we show that choosing better spectral esti-
mator can help us get closer to the energy-optimal parameters
and reduce the energy consumption. There is a fundamental
trade-off between the variance and frequency resolution for
spectral estimators [42]. Welch’s method has less variance than
periodogram, at the cost of lower frequency resolution. We
compare these two spectral estimators by simulations using
the synthetic data described in Section V-A.

Figure 5 illustrates the performance of the spectral estima-
tors. Panel (a) shows the mean of the sample autocorrelation
function, which is in excellent agreement with the oracle
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25

50

Fig. 5. Comparison of the periodogram and Welch’s spectral estimators. (a)
Sample-based correlation function and the oracle correlation function (42).
(b) Spectral estimations and the oracle power spectral density. Solid curves
denote the mean while the standard deviation is indicated by shading.

(42). Panel (b) compares the power spectral density calculated
by the periodogram (orange curve and shading) and Welch’s
method (green curve and shading) with the oracle power
spectral density (purple dashed curve). The latter is obtained as
the Fourier transform of (42). The means of spectral estimators
match the oracle very well except at zero frequency. Note
that the spectral density at zero frequency does not influence
the objective function in (38). The periodogram estimator
has higher resolution compared to Welch’s method, but the
variance is significantly higher. In practice, Welch’s method
demands more data but, when stationary assumptions hold
for a long enough time, this method can bring more precise
spectral description.

Fig. 6 compares the controller parameters chosen from
oracle, periodogram and Welch’s method, denoted as θ(o),
θ(p), and θ(w) respectively, where θ ∈ {β1, βL, σL}. One may
observe that Welch’s method achieves better concentration
around the oracle parameters than the periodogram, and the
resulting parameters lie closer to the oracle which is the
optimum based on ground truth distribution.

Finally, we compare the energy consumption of the lin-
earized and nonlinear dynamics using parameters chosen
from oracle, periodogram and Welch’s method. In the linear
case, the energy consumption is evaluated using surrogate
model (27) which neglects the nonlinear physical effects. We
denote the corresponding energy consumptions as w̄(o), w̄(p)

and w̄(w). In the nonlinear case, the energy consumption is
evaluated using (18), and the corresponding energy consump-
tions are w(o), w(p) and w(w). To compare the three spectral
estimations, we compute the relative energy advantages

∆w̄(♢□) = (w̄(♢) − w̄(□))/w̄(□) , (46a)

∆w(♢□) = (w(♢) − w(□))/w(□) , (46b)

where ♢,□ ∈ {o,p,w}. The histograms of 10100 observation-
testing pairs are shown in Fig. 7. The panels in the left
column show linear results, while in the right column we
show nonlinear results. In panels (a) and (b), we compare the
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Fig. 6. Distribution of controller parameters optimized for energy consump-
tion. The orange histogram corresponds to the periodogram estimator while
green corresponds to Welch’s method. Purple dashed lines correspond to
the optimal controller parameters chosen with oracle knowledge of speed
distribution.
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Fig. 7. Comparison of energy consumption of the periodogram and Welch’s
estimator. (a), (b) Energy consumption compared to the oracle. (c), (d) Direct
comparison of the two spectral estimators.

energy consumptions of the estimators to those of the oracle.
The distribution of energy consumption is more concentrated
around 0 for Welch’s method, which means in most cases, the
parameter given by Welch’s method can achieve similar energy
consumption as the benchmark oracle parameter. We also
compare these two spectral estimators directly in panels (c)
and (d). For most of the cases, Welch’s method consumes less
energy than periodogram as ∆w̄(pw) and ∆w(pw)is distributed
more towards positive values. On average, the periodogram pa-
rameters consume 10.78% more energy than Welch parameters
in linear case while 1.42% more energy in nonlinear case.
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Fig. 8. Comparison of controllers with and without additional delay. The
histograms are distributed towards positive values in each panel, which
indicates that the additional delay leads to energy savings.

D. Benefits of Additional Delay

Here we quantify the benefits of incorporating the additional
delays σi into the controller (11). Recall that these delays
were introduced based on the following intuition. Considering
lean penetration of connected vehicles, the CAT may connect
to vehicles far in the distance. Introducing additional delays
enables the CAT to “wait” until the effect of the distant
vehicles’ motion propagate closer, and thus, it may achieve
a more energy-efficient response. In this section, we compare
the controller with and without additional delay using synthetic
data as well as experimental data.

First, we apply the proposed method to find the optimal pa-
rameters for the case when σi = 0. The corresponding energy
consumption values using oracle, periodogram and Welch’s
method are denoted by ŵ(o), ŵ(p) and ŵ(w), respectively. In
order to compare this controller with the one with additional
time delay, we define the relative energy advantages

∆ ˆ̄w(♢) = ( ˆ̄w(♢) − w̄(♢))/w̄(♢) , (47a)

∆ŵ(♢) = (ŵ(♢) − w(♢))/w(♢) , (47b)

for linear and nonlinear cases, respectively, where
♢ ∈ {o,p,w}, cf. (46). The corresponding histograms
are shown in Fig. 8. For all methods used, the additional
delay brings energy benefits. In the linear case, oracle,
periodogram and Welch’s method save 11.53%, 9.86% and
9.77% energy on average. In the nonlinear case, the average
energy benefits are 2.00%, 1.76% and 1.59%, respectively.
Although the nonlinearity in the dynamics impairs the
advantage, the difference is still significant.

For lean penetration of connectivity, the number of vehicles
driving between the CAT and the leading CHV may be vary-
ing. In previous simulations, we fixed the leading vehicle to
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Fig. 9. Controller parameters for varying leader (L = 2, . . . , 8 vehicles
ahead of the CAT). Each synthetic dataset produces a controller parameter
triplet (β1, βL, σL). The means of parameters optimized with periodogram
and Welch’s method are plotted with solid line. The widths of shaded areas
are determined by the standard deviations. Controller parameters from oracle
knowledge of spectral density are plotted with dashed lines.
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Fig. 10. Energy consumption for varying leader (L = 2, · · · , 8) using 10100
observation-evaluation pairs. Solid lines represent the mean values while the
widths of shaded areas indicate the standard deviations.

L = 8. Now, we investigate optimal controller parameters and
the corresponding energy consumption for different leading
vehicles L = 2, . . . , 8 and show that our method is agnostic
to the change of leading vehicle.

In Fig. 9, we show optimized controller parameters for
different leading vehicles. For each of the 101 synthetic
datasets, spectral densities are estimated with periodogram
and Welch’s method resulting in 101 controller parameter sets
(β

(♢)
1 , β

(♢)
L , σ

(♢)
L ),♢ ∈ {p,w}. The mean of the parameters

are plotted with solid line, and the widths of the shaded areas
indicate standard deviation. Since the datasets are synthetic, we
have access to the oracle knowledge of spectral density. The
correspondingly optimized oracle parameters are plotted with
dashed line. The mean periodogram and Welch parameters are
close to the oracle parameters, and the Welch parameters have
smaller deviation for β1 and βL. Also note that when L is
small (L = 2, 3, 4) the optimal delay is σL = 0 [s]. This can
be explained intuitively: when the leading vehicle L is close
to the ego vehicle, instantaneous response is preferred without
additional waiting time [23].

The energy consumption results with respect to peri-
odogram, Welch and oracle parameters are plotted in Fig. 10.
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Fig. 11. Energy consumption as a function of the additional delay σL in the
controller for different leading vehicles (L = 2, . . . , 8), for the case of a real
traffic congestion dataset. Crosses correspond to the optimal σL values based
on periodogram and Welch’s method. Panels (a) and (c) show the energy
consumptions for the linear case, while panels (b) and (d) correspond to the
nonlinear case.

The means of energy consumption are plotted with solid line
and the standard deviation determines the width of shaded
areas. In linear case, shown in panel (a), oracle parameters
consume lower average energy than periodogram and Welch
parameters, while in nonlinear case depicted in panel (b),
Welch parameters have similar and sometimes better aver-
age performance as oracle parameters. In both cases, Welch
parameters have lower average energy consumption than pe-
riodogram parameters. In addition, connecting to vehicles
farther in the distance saves more energy than connecting
to vehicles nearby due to the string instability of human-
driven vehicles ahead. In other words, vehicles in the distance
may have lower speed variations, which provides smoother
reference trajectories for the controller.

We make a further case study on the experimental traffic
congestion data shown in Fig. 2(b). We show the optimal
energy consumption as a function of the leading vehicle’s
index L and the additional delay σL. For each fixed value of
σL, we optimize for β and βL using periodogram and Welch’s
method. The corresponding energy consumptions are plotted
in Fig. 11, and the optimal delays σL chosen by periodogram
and Welch’s method are marked with crosses. When the CAT
is connected to vehicles nearby, for example L = 2, 3, 4, 5, the
additional delay does not bring extra energy benefits, since the
propagation time of the congestion waves between vehicle L
and the CAT is short. However, for more distant connections,
such as L = 6, 7, 8, incorporating the additional delay σL

yields significant energy savings. This is consistent with results
in Fig. 9(c). Furthermore, connecting to vehicles farther in
the distance leads to more energy benefits than connecting to
vehicles nearby, which is consistent with Fig. 10.

VI. CONCLUSION

In this paper, we designed longitudinal controllers for a
connected automated truck traveling in mixed traffic that con-
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sists of connected and non-connected vehicles. We leveraged
that the truck has access to beyond-line-of-sight information
via vehicle-to-vehicle communication, and we introduced an
additional delay in the control law when responding to distant
connected vehicles. Human-driven traffic was modeled by sta-
tionary stochastic processes and car-following models, where
the spectral properties of the stochastic processes were linked
to the average energy consumption with a new theorem. The
controllers were optimized by minimizing average energy con-
sumption. In the underlying optimization problem, the spectral
density of the stochastic process was estimated from data
using spectral estimators. We showed that our optimization
framework can select designs with significant energy saving. It
can also facilitate improvements when utilizing motion infor-
mation from distant vehicles. Simulations with large amount
of synthetic data showed that energy benefits can be realized
even with lean penetration of connected vehicles, regardless of
their positions in the traffic. Further investigations about how
the energy consumption is affected by the penetration rate of
connected vehicles are left for future research.

The theory in this paper is based on linear systems under
stationarity assumptions. It can be readily applied not only
to trucks but other types of vehicles independent of their
propulsion system. Although nonlinearities were not consid-
ered in the parameter optimization, the simulations of the
nonlinear dynamics showed the robustness of our method. We
remark that energy optimization and evaluation were done in
an offline fashion in this paper. Controller parameters were
optimized using training datasets and kept constant during
testing simulations. Furthermore, our spectral method focuses
on the average performance in steady state and transient
responses are omitted. To implement controllers with online
optimization in dynamically changing traffic environments,
transients in the traffic conditions should be considered and the
wide-sense stationarity assumption needs to be relaxed. Our
future research will also focus on addressing nonlinearities and
online energy optimization.
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Gábor Orosz received the MSc degree in Engi-
neering Physics from the Budapest University of
Technology, Hungary, in 2002 and the PhD degree
in Engineering Mathematics from the University of
Bristol, UK, in 2006. He held postdoctoral positions
at the University of Exeter, UK, and at the University
of California, Santa Barbara. In 2010, he joined the
University of Michigan, Ann Arbor where he is cur-
rently an Associate Professor in Mechanical Engi-
neering and in Civil and Environmental Engineering.
His research interests include nonlinear dynamics

and control, time delay systems, and machine learning with applications to
connected and automated vehicles, traffic flow, and biological networks.


